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ABSTRACT 

The purpose of this study is <,o investigate the ability of a mod- 

ified adaptive algorithm to increase the convergence rate on weak noise com- 

ponents.    A detailed mathematical derivation of the modified algorithm is pre- 

sented.    In addition,  performance of the algorithm on synthetic data is evaluated. 

The algorithm is applied in both a single loop and a two loop mode.    Both single- 

constraint and multiple-constraint modes of operation are investigated. 

The results of this study indicate that the multiloop adaptive 

filtering algorithm can be used to speed the rate at which an adaptive filter 

set approaches optimality. 

Neither the Advanced Research Projects Agency nor the Air Force 
Technical Applications Center will be responsible for informaMon contained 
herein which has been supplied by other organizations or contractors,  and 
this document is subject to later revision as may be necessary.    The views 
and conclusions presented av*. those of the authors and should not be inter- 
preted as necessarily representing the official policies,  either expressed or 
implied,  of the Advanced Research Projects Agency,  the Air Force Technical 
Applications Center,  or the US Government. 

iii 

,:'-' ■' :-4    ■•'-"        '- ■■-..t.i ::.;<-,,J;.,,^':,,.,.»    ;!•,,;   ,.,,..     h        „'^ , ^     ^       „ 



! 

I 

I 

L 

I 
L 
[ 
I 
I 
I 
I 

TABLE OF CONTENTS 

SECTION TITLE PAGE 

ABSTRACT Hi 

I. INTRODUCTION 1-1 

II. MATHEMATICAL, DEVELOPMENT OF 

THE TECHNIQUE U-l 

A. MULTILOOP ADAPTIVE FILTERING 

FREQUENCY DOMAIN U-l 

B. MULTILOOP ADAPTIVE FILTERING 

TIME DOMAIN II-9 

C. DATA GENERATION 11-14 

D. EVALUATION AND DISPLAY 11-18 

IIL                               PROCESSING RESULTS AND CON- 

CLUSIONS III-l 

IV. REFERENCES IV-1 

iv 



w^ ' I    

LIST OF FIGURES 

FIGURE TITLE PAGE 

UI-l DATA MODEL III-2 

III-2 SINGLE CONSTRAINT MODE - ONE LOOP 
STARTING WITH OPTIMUM FILTER DE- 
SIGNED WITHOUT S3( Mj  = . 00015) III-4 

III-3 SINGLE CONSTRAINT MODE - TWO LOOPS 
STARTING WITH OPTIMUM FILTER DE- 
SIGNED WITHOUT S3(M    = .00015,   M2= .0003)        III-5 

III-4 FILTER COEFFICIENTS III-6 

III-5 SINGLE CONSTRAINT MODE -  ONE LOOP 
STARTING WITH BEAMSTFER FILTER 
(M.  = .001) III-7 

III-6 MULTIPLE CONSTRAINT MODE - TWO 
LOOPS STARTING WITH BEAMSTEER 
FILTER (M= .001,    M2 = .0015) III-8 

HI-7 MULTIPLE CONSTRAINT MODE - TWO 
LOOPS STARTING WITH OPTIMUM FILTER 
DESIGNED WITHOUT S  ( M.  = . 00015,   ß    = 
.0003) III-9 

mmmmmm* ^ ■ imiwrt.iiijirrrwrTiirT ■-"" ■»■MIMI » wmtmmtmm— ~>---.■   i ■■.. ~ »•• ■• •• -■•■■■■•"■M.~f.-->...^.,^~i,r.:,., 



r*4^'mm 

SECTION I 

INTRODUCTION 

The rate of convergence of an adaptive filter algorithm to a 

neighborhood of the optimum filter is approximated in terms of the eigenvalues 

corresponding to the principal components of some matrix closely associated 

with the noise matrix (Brennan,   1971).    For the frequency-domain maximum- 

likelihood adaptive algorithm,  the adaptive update equation is: 

,t+l 
Zli     I 

vv 
V a;)xt(xH,t 

t th H 
where   X     is the input data vector at the   t       iteration,    V      is the beamsteer 

filter,    A   is the conjugate transpose of the adaptive filter vector at the (t+1) 

and   t       iterations,  respectively,   and   /i   is a real scalar quantity controlling 

the adaptation rate.    The superscript   H   denotes conjugate transpose.      The 

output of the adaptive filter at the   t       iteration is   (A   ) X .    If we substitute 
H t     H t 

* = E (XX   )   for   X (X   )    in the update equation for this particular algorithm, 

the time constant    7      is approximately 
P 

2/iA 

for energy lying on the   p       orthonormalized eigenvector of the matrix 

I 
1 
I 

. 

(■•^)-(-ä) 
th 

where    t1 << 1/A .    Here    A       is the   p   '   eigenvalue   of that matrix. 
P P 

■ 
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7    is the time constant for the   p       principal component in the sense that the 
P 

portion of the excess filter output RMS 

■\^v (AH*A) minimum 

th 
associated with the   p       principal component of the matrix 

(-;£)•(■■ 7=) 
is reduced by a factor   e = 2.71828   in approximately   1/(2^A )   iterations. 

P 
Similarly, the amplitude 

a     -     (a  ) p p optimum 

of the difference between the adaptive filter and the optimum maximum- 

likelihood filter along the   p      principal component is likewise reduced by a 

factor   e   in the same period of time.    It is assumed that substitution of "fr for 

X (X )     does not change the answer much. 

Stability of the adaptive algorithm requires that 

/i < 1/A max 

so that the time constant for weak components may be very great and ß can- 

not be chosen sufficiently large for practical effectiveness against very weak 

components. The purpose of the present study is to investigate the ability of 

modified adaptive algorithms to increase the convergence rate on weak noise 

components. 

For the purpose of simplicity,  the modified algorithms in the 

frequency domain will be discussed,  alMiough in the following section the mod- 

ified algorithms are developed in both the time and frequency domains.    Let 

there be a sequence of data vectors   X     at a specific frequency.  These vectors 

*   This would be the case if successive data vectors were independent.    In the 
dependent data vector case at hand,  one might expect this to be true for   fi 
very small. 

1-2 
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H. 
are to be processed adaptively so as to preserve a signal    S = cV/(V   V), 

where   c   is a complex scalar quantity aad   V   is the conjugate transpose of 
o 

the beamsteer filter   V   .    One way to formulate this algorithm is 

t VH   t .„H t   t 
Oj     =   V   X     -   (Fj ) X   , 

t H t 
where   o     is the output of the first loop at time   t ,  and   (F   )    is an adaptive 

t H   t 
filter applied to   X     to predict the complex-valued scalar quantity   V   X .    If 

H t 
the constraint   (F   ) V = 0    is imposed for all   t ,  then it follows for the input 

t H 
X   = S = cV/(V   V)   that the output is 

t v - (FJVV 

vHv 

cVHV 

vHv 

=       C 

H H 
so that the combined filter   V     - F      has a unit response to the signal.    It is 

possible to consider a second loop or filter 

=     o. (F2
H,V 

or in general 

0k   =   Vl   "  (Fk)x 

where the signal is still preserved if the constraints 

(F^Vv   =   0 I 

I 1-3 
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are required.    If the filters are to operate independently,  the optional addi- 

tional constraints 

,r}V rj, • o (j *i<) 

need to be specified. The algorithm with only the constraint to preserve the 

signal will be termed the single-constraint mode algorithm, whereas for the 

algorithm with the additional constraints,   the terminology multiple-constraint 

mode will be used.    Heuristically,  the second loop allows the filters   F       to 
H 

concentrate on the smaller components of the noise because   F       has reduced 

the largest noise component. The following section will develop the algorithm 

mathematically, and then in the final section some results will be given to in- 

dicate the behavior of the algorithms on synthetic data. 

1-4 
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SECTION II 

MATHEMATICAL DEVELvOPMENT OF THE TECHNIQUE 

A, MULTILOOP ADAPTIVE FILTERING - FREQUENCY DOMAIN 

1. Steepest Descent Algorithm with Complex Linear Constraints 

Let   f   be a real-valued function of the real variables x  ,   y  , 

x   ,   v.,  ....  x   ,   y  .    Suppose that these variables are subject to the   m   com- 
2       2 n       n 

piex constraint equations   g.(x.,   y.i  x   ,  y  ,   ....  x  ,   Y  )=0    (k = 1,2,. . . , m). 

To reduce the quantity   f   using the steepest-descent algorithm while satisfy- 

ing the constraint equations,  the variables x,  y.,  x   ,  y  ,  ..., x  ,  yn     can 

be altered according to the equation 

J+l = P'.Mjv(t2    g     [ ̂ x^    ^Re8k)^(Ay)kV(Imglr) I 
where the superscripts   t   and   t+1    refer to the   t       and   (t+1)     iterations, 

respectively,   where   ^   is a scalar controlling the magnitude of the change in 

the vector   P,  where the variables   (A   ),    and   (A   ),    are real-valued Lagran- x k y K 

gian multipliers corresponding to the real and imaginary parts of the   m   com. 

plex constraint equa ions,   and where the vector    P   and the operator   V     are 

column vectors given by the equations: 

II-1 



p = 

"2 

y. and     7 ■ 

d/d; 

b/b*. 

a/dy, 

Ly"J 
d/d: 

ä/a 

The update equation implies that 

t+1 t i   b( ,   ^    \ 
3        J        \dxi        IT,  L 

a<Re g.) dd"! 

^ 

and 

t+i    t       ( df       ^  f      a<Re gk) acm g,^)")^ 

Alternatively, 

ftl xk [  aT-             dyj    J 

A Fadm g 
2^ (A ).    —v— Pi ^ [ ^ 

+2 

f2 +   1 

• 
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For linear constraint conditions of the type 

Vj    |(R« V^   -   i(Im V^ j     (x.    +   iy^ 

= g [v^Vj + V^Vj] ^[y^^Vj-V1"1 vj 

= o. 

d(Re g.» d(Re gJ 
—^ 2   +   i — Z    =     (Re V, ).   +   i (1m V, ) 

ox, dy 
i 'J 

k'j k'j 

and 
MIm gk) d(Im gk) 
__  + i -__,—   - +i 

dx. d: 
j rJ 

[(ReVk)j   +i(ImVk)j] 

so that 

•vV"-'vV Ai&r^) 

t, [K\ 
+ ' 'Vk] [,Re Vj ♦ '(Im Vj]j' 

where   V      is an arbitrary complex-valued column vector with   n   complex- 

valued components   (Re V  )   + i (Im V  ).   (j « 1,  2,  ....  n).    Setting   A     = <A   K   + 
K J ^ J K X K 

i (A   ).    *nd   (V   ). = (ReV   ).   + i (1m V   ) ,  the update equation becomes 
yk kj kj kj 

(x. + iy.)1*'  = (Xj + "/■*•■*,)•'s «^v,); 

11-3 



The complex-valued Lagrangian multipliers     A        are determined from the 

m   constraint equations. 

Single Constraint Mode 2. 

Let the output     o      at the   n       loop of a multiloop frequency- 

domain adaptive algorithm be given by the formula 

! 

I 
I 
I 

I 
I 
I 
I 
I 
,, 

n -1 
(F ̂ x4. 

.th .H    . th 
where    o is the output of the   (n-1)       loop,    F       is the   n    -loop adaptive 

n-1 n 

filter,  and   X   is the input data vector.    The superscript   H   denotes conjugate 

transpose.    The superscripts   t   and   t+1   denote the vectors at iterations   t 

and   t+1,  respectively.    From this point on,  the superscript   t   will be under- 

stood if the superscript   t+1   is not used.    In the first loop of the adaptive 
jj 

filter,  the zero-th loop output is defined to be the beamsteer output   V   X, 
■I 

where   V      is the beamsteer filter. 

* th   , 
The squared amplitude     o o       of the   n       loop output is 

♦ * o o     =   o     to     , 
n n n-i   n-1 

FH Xo* -   o     , XHF     +   FH XXHF    , 
n n-1 n-1 n n n 

where the superscript    •     denotes complex conjugate.    In the single-constraint 

mode of the adaptive algorithm,  this quantity is reduced subject to the constraint 

VHF    =   0 
n 

using the jteepest-descent algorithm. 

Since 

♦ 
Ö(0n0J * H 
N    " "  r      =     -2Re   (Xo     .).     +    2Re(XX   F). 
ö(ReFn) V      n-l'j n'j 

II-4 
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and 

aV** 
=     - 2 Im (X c d(ImF   ). 

r' J 

^v*) .    .   *{0n0J 
WeFJ. MlmF  ). 

n J 

,H. 

=     2(-X o     ,   +   XXHF  ) ., 
n  j n-1 

.th 
wherf;    j    denotes the    j        component of the vectors,    the update equation is 

,t+l 
n =   F      +2u(Xo     ,-   XXHF      -    AY) 

n n-1 n 

=   F     + 2^1 (X o       -     AV). 
n n 

H   t+1 
To determine the Lagrangian multiplier, the relations   V   F        =0   and 

H   t n H v   F     =   0    are used,  and the filter update equation is premultiplied by V   : 

0   =     VHFt+1 

n vV    +   2MVHXo*     -      VHV) n n ' 

=    2(i(VHXo*   -    AVHV); 
n 

AVHV   .   VHXo* 
n 

A = 

H      * 
V   Xo 
 n 

vHv 

Substitution of  A  into the update equation yields 

,t+l 
n 

F    +   Zu 
n 

Xo VV 

V 

Hx       *1 

II-5 9 
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r^ 

F    +   2ii o 
n n 

VV 
H 

vHv 
X 

VV 
H 

vHv 
F      +   2/io     X 

n n 

In the last step,  the fact that    V   F     =0    was used. 
n 

3. Multiple Constraint Mode 

t th 
In the multiple-constraint mode,  the output    o       at the   n 

n 
loop of the algorithm is again 

»i n-1 n 

but the squared output    o o       is reduced subject to the multiple constraints n n J ' 

k-1     n 
(k = 1,  2,  .  .   .  ,  n), 

H where   F       is the beamsteer filter.    Therefore the update equation is 
o 

,t+l 
n 

r;-. Fn+ 2MXon -  £   FkÄlXk-1).. 
k=I 

If the matrix   M   and the column vector   A   are defined by the equations 

M = 

,H 

H 

n-1 

and A = 

n-1 

II-6 
10 
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r^ 

the update equation may be rewritten 

Ft+1    =   F    +   2M (Xo*   -   MHA). 
n n n 

To determine the column vector A    of Lagrangian multipliers, 

the update equation is premultiplied by   M      : 

wt+l     t+1 
O      =    M       F 

n 

=    Mt+1 F     +   2Mo*Mt+1X   -   Mt+1MHA)   . 
n n 

where   O   is a column vector with   n   zeroes; 

.t+1 _H .t+1 * . .t+1 
Zu M       MA=M       F+2/xoM      X; 

n 

A   =    ——   (M      M)M       F+o(M       M)      M      X 
Zfx n n 

Substituting   A   into the update equation, 

-t+1 
= F     +    2u o    X 

n n 

x*H       t+l      H.-l       t+l_ * xyrH/xyrt+k^X-1!^^^ M(M      M)      M      F      -2iioM(M      M)M       X x ' n ^   n        ' 

.t+l^.H.tT-l.t+l =   {l-^")'   ^"'(M")*]     Mt+1}  [FS   ZMo'jV]. 

In the second loop. 

M^M«)* 
.H 

(Ff)t+1 V    F i] 

11-7 
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vHv 

(Ff^V 

V
H

F; 

(rf )t+1 F; 

vHv 0 

,   H.t+1    t 
0        {Fl)       Fl 

so that 

[i/VY]-1 vHv 1 

(Ff )t+l F\ 

and 

(M")
4
 [M^CM«)*]"

1
 M 

. t'] vHv 0 

1 

(Ff )t+1 F\ 

1 

VHV     (F")t+1 F* 

,H 

(Ff)t+1 

vv H 

vHv 

F\ (Ff r1 

(Ff )t+l F; 

.H 

(Ff)t+1 

Thus the second-loop update equation is 

II-8 
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.t+1 vv H 

vHv 

[T\   +   Z>iolW] 

B. MULTILOOP ADAPTIVE FILTERING - TIME DOMAIN 

1. Single Constraint Mode 

t th 
Let the output    o       at the   n       loop of a multiloop time-domain 

n 
adaptive algorithm be 

t t ,_T t Yt 
o     =     o -   (F   )   X   , 

n n-1 n 

where    o^j     is the output of the   (n-l)       loop,    F       is the   n    -loop adaptive 

filter,  and    X     is the input data vector.    The superscript   T   denotes trans- 

pose.    In the first loop of the adaptive filter,  the zero-th loop output is defined 
T T 

to be the beamsteer output    V   X,    where   V      is the beamsteer filter. 

The squared output    o       of the   n      loop output is 

n 
2 T 

=     o     ,    -   F    Xo     , 
n-l n       n-l 

T T       T 
o     ,  X   F     +   F    XX   F    . n-l n n n 

In the "single-constraint" mode of the adaptive algorithm,  the squared output 

o^    is reduced subject to the non-redundant constraints expressed in the matrix 

equation 

MF      =   O 
n 

using the steepest-descent algorithm.    Here   M   is a matrix with as many rows 

as constraint conditions and as many columns as filter weights,    F     is a column 
n 

vector containing the filter weights,    and   O   ia an all-zero column vector with 

II-9 13 



1 

as many elements as constraint conditions.    Several constraints were permitted 

so that the  frequency response to a signal from the desired look direction for the 

combined filter 

n 
V 

k=l 

could be made white. 

The update equation for the adaptive algorithm is 

-t+1 
n 

=     F HV [•■ +      2 A    MF .] 
=     F       +2 

n 4(0n-l   " 
T T 

X   F) X   -   M *] 
=     F       +    2 

n 
fxLx - MTA| 

where V denotes a column vector operator containing partial derivatives with 

respect to the corresponding filter weights in   F^  and where   A is a column 

vector having as elements Lagrangian multipliers corresponding to each of the 

constraint conditions.    The constraint conditions   MFn     =   O   and   MFn =   O 

are used to determine the column vector A   by premultiplying the update 

equation by   M : 

O    =     MFt+1    =   MF     4-    Zulo   MX   -   MM A 
n L n n ] 

"   [0n MX MMTA ]■ 

MMTA o   MX 
n 

11-10 14 
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A =     o   (MM7)"1 MX. 
n 

t+1 I T T -1 1 
F =     F_     +    2 M o_  I   X - M    (MM   )      MXJ 

=     F       +     Zß o     |   1    - MT (MM7)"1 M] > 

Substitution into the update equation gives 

=     Fl - MT(MMT)"1 M 1 [F     +    2M o    Xj  . 

2. Multiple Constraint Mode 

t th 
The output    o       at the   n      loop of the algorithm is the same 

as for the "single-constraint" mode,   but the constraints 

T 
F, F      =   0 

k    n 
(k = 1,  2,  .  .  .   ,  n-1) 

supplement those expressed in the matrix equation 

M F     =   O     , 
on c 

where   M     is a time-invariant matrix used to express   c   linear constraint 
o r 

conditions and   O     is a column vector with   c   zeroes, 
c 

The update equation is 

t+i ,. _ !   2 .   , ;:r,_ .„    .    T^    -..   „T„   I 
Ft+l       =   F    -   MV   o2 +   2 ATM F    +    Y*     2A1F1

TF 
n n n o    o   n        .fc-' k   k 

^ k=l 
n-1 

=     F     +    2M  (o X - MA      -     V     F.A, )   . 
n n o    o *^        k   k 

k=l 

where     A     is a column vector containing Lagrangian multipliers correspond- 

ing to the     c     constraint conditions expressed in the matrix equation M F    = O  , 

and where the values     A      are scalar Lagrangian multipliers corresponding 
IC 

to the new constraint conditions. 

11-11 15 
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If a new matrix     M    and column vector     A      are defined by the equation 

M   = 

M 
o 

.T 

n-1 

and A = 

n-1 

the update equation may be rewritten 

t+1 T 
F =   F     +    2   (o   X   -   M   A ) . 

n n n 

M   now has     c + n-1 rows,  and   A   now has     c + n-1   elements. 

To find the column vector    A   ,  the update equation is pre- 

multiplied by   M      : 

^ ..t+l^t+1 
O .     =   M      F 

c+n-1 n 

=   Mt+1F    +   Zß{o Mt+1X - Mt+1MTA) . 
n n 

O   ,      ,    is a column vector with   c+n-1   zeroes.    The superscript   t+1   is c+n-1 r r 
T 

attached to the matrix   M   because it contains the time varying filters   F   ,..., 
T 

F       .    Rearrangement of the preceding equation gives the formula 

wt+l^T. wt+l_    ._        x>rt+l 
ZuM       M   A    =   M       F    + 2/io   M      X 

n n 

and hence the result 

1       /x,t+1wrr\-1wt+lT, /wt+lwT.-lwt+l A =   ——    (M      M)M      F+o(M      M)M      X. 
cfi n       n 
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Incorporating this result in the update equation, 

-t+1 =   F    +    2ßO X 
n n 

MT(Mt+1MT)-1Mt+1Fn   -   Z^NKM^MVV+'X 
n 

. {,   .   (MV [»"Wf I"'   Mt+1 } (F'n   +   Z.o^X1) 

In the second loop. 

M^MV 
M C T   '       t 

Mo    ]    FlJ 

T 
M M 

o 1 M F^ 1      o    1 
^  

(r^)"1 T 
M 

o 
1 'FT>t+1 

i 

Fl 

T ' 
MM |     O 

o    o c 

(FJ^'F», 

The inverse of   M      (M   )    is 

(M MT)" 
*   o   o' 

• 1 
O 

c 

nT 1 
O 

c IF^F', 

and 

(M7)'   [M^NM
7

)'] -'    Mt+1 

- T 1 
M     | 

o r\\ 
T -1   ' 

(M M   )       |     O 
o   o         ,        c 

M 
o 

1 
nT           1              1 (r[)t+1 

C
            |     (^^^l 
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T T -1 
M   (M M   ) 

o      o    o 
1 

1  (F^)"' ? 

T T -1 
M   (M M   )     M     + 

O       O     O o 

1 

M 

(FJ)"' 

Hence the second-loop update equation is 

,t+l T T -1 
I - M   (M M   )     M 

o      o    o o 

F; (F^)"1 k * ^i*1] 

c. DATA GENERATION 

An array of elements located in a three dimensional space is 

defined by a set of coordinates,  (X, ,   Y. ,  Z, ) where   k = 1,  2,  ... ,  C,  and 
k       k       k 

C   is the number of elements in the array.    Signal vectors in the frequency 

domain ai d at frequency   f,  S.,  for the 

ified "lock directions" by the equation: 

domain ai d at frequency   f,  S.,  for the array are defined for each of the spec- 

-iZTTf    A   t. (1) 
> • 

-iZTTf    A    t. (2) 
•      J 
l 
i 

-i27;f    A    t.(C) 

where   j   referenceb a specific "look direction".    The   j   '   "look direction" is 

defined by ■ set of angles    AZ. (A7iniuth) and   EL. (Elevation)   as illustrated 
J J 

below. 
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The     A t.(k)   is the relative time delay of the signal at array 

element   k   and is dependent upon the "look direction", j.  and the propagation 

velocity of the signal,  VEL. 

Look Direction j 

Consequently   S.   can also be defined as 

-iZTTf 

-UTTt 

si - 

U- R(l) 
VEL 

U-R(2) 
VEL 

.iZTTi 
U-R(C) 
VEL 

where   R (k)   is a vector in the array coordinate space defining 

11-15 j[9 
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the location of element   k   relative to some reference element,  and   U   is ® unit 

vector from the reference element in the direction of the "look direelion".    There- 

fore, the comr^nents of   U   are: 

Ux       =   Co» (EL) Sin (AZ) 

U =   Co» {EL) Co» (A7) 

U Sin (EL| 

A composite cross-power matrix, 0 ,  i» generated from   p   signal 

vectors plus random noise actording to the following formula: 

(i) 

where   a.   and   0   are the relative weights to be associated with the ilgnal vectors 
J 

and random noise component,   respectively. 

If we let   x   be     complex random vector »uch that 

P 
.    V 2*    *» s, ^ *w 

j*i 
i  j (2) 

where    «.   is a random number with normal distribution,  zero mean and variance 

a . ,    and where 
i 

II 
w   is a complex random vector such that      ww      ■   I   ,    then by choosing 

l*\T 
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it follows that 

n   = xx 
X 'H '(5'^)(£vHH 

i  S,   .    +  O       ww 
J   j  J S'i 

P 
M T2   ".S.S.     +     ßl 

Thus, we can use equation   (2)   to generate a set of data vectors which has the 

crosspower matrix  fl   in equation (1). 

21 



T^ 

D. EVALUATION AND DISPLAY 

We try to evaluate the performance of the multiloop adaptive 

filtering teci'nique by comparing its mean square output (MSO) at time   t   for 

each of the signal vectors,  white noise and composite erergy with those of the 

optimum maximum-likelihood filter. 

The formula we used to calculate the   MSO   is as follows: 

White Noise 

Optimum Filter 

0FH  F 
o      o 

Adaptive Filter Loop   K 

K K 
my - Z '1)    cv - T rj) 

i=l i=l 

Signal Vector j 
J 

FH h 
o J 

(V 
K 

ri   l   J 

Composite Energy FH n   F 
o o 

K 

<v- Z rUn   (v- Z Fl) 
i=l i=l      1 

where   Fo   is the maximum-likelihood filter and 

^   Z 

where     Z n' 

and   S.    is the signal vector to be preserved. 

We take the ratio of optimum filter MSO to adaptive filter loop   k 

MSO and plot it as a function of   t   (number of adaptive iterations) for each of the 

signal vectors,   white noise and composite energy,   respectively. 

11-18 22 



' 

SECTION III 

PROCESSING RESULTS AND CONCLUSIONS 

A set of synthetic data was generated for an equally-spaced line 

array of five elements.    Three coherent components were added to synthetic 

random noise.    The first of the three coherent components,  S  ,  was a signal 

from the look direction.    The second and third coherent components,  S_ and 
Cm 

S  ,  were interfering noise components.    Different weightings were assigned 

to these vectors (as shown in Figure III-l).    The weighting    a    = 0   for the 

signal component   S     indicates that the signal component was not considered 

to be part of the noise output.    Component   3   represented a weak noise com- 

ponent in the presence of a strong noise component (component 2).    It was ex- 

pected that multiloop adaptive filtering would increase the sensitivity of adap- 

tive processing to the weak noise component. 

Several runs with two-loop adaptive filters were made using 

500 synthetically-generated data vectors as input to a like number of iterations 

of the adaptive-filter algorithm.    Using the frequency-domain algorithms de- 

rived in the previous section,  the adaptive-filter algorithm was run both in the 

single-constraint mode and the multiple-constraint mode.    Two different sets 

of initial filters were tried.    The first was an optimum filter designed for the 

data as specified,  except that component 3 was omitted.    The second was a 

sirnpic beamsteer filter. 

The curves plotted are the ratios 

F 
H n F / F" n FA, 
o       c     o'       A A 

where     0     is the crosspower spectrum matrix for each of the noise compon- 
H H 

ents,    F        is the optimum filter and   F      is the composite adaptive filter 

III-l 
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Figure III-l.    Data Model 
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I vector corresponding to the iteration for which the power ratios are plotted. 

Each curve,  therefore,  measures the performance of the adaptive filter rela- 

tive to the optimum filter for each noise component or all noise components 

combined. 

Figures 1II-2 and III-3 show the single-constraint-mode results 

for the one-loop and two-loop algorithms through 500 iterations.    The starting 

filter was an optimum filter designed for the specified noise field buth with 

component 3 omitted.    Convergence rates were    M    = 0. 00015 in the first loop 

and   M- = 0. 0003 in the second loop.    The two-loop algorithm concentrated 

much more effort on the weak component   S     and actually suppressed this 

energy more than the optimum filter.    The results of Figure III-3 re/lect the 

single-constraint mode of processing,  where the second-loop filter is con- 

strained only to pass the signal. 

In the top half of Figure III-4 are presented the numerical values 

of the optimum filter set.    Differences between the optimum filter set and the 

one-loop or two-loop filter sets after 500 iterations are shown in the bottom 

half.    For purposes of comparison,  the differences between the optimum filter 

weights and the initial filter weights are also shown in the bottom half of the 

figure.    The circles representing the two-loop system lie much closer to zero 

than the triangles corresponding to the one-loop system.    Thus the two-loop 

system appears to have converged significantly faster toward the optimum 

filter. 

A similar set of results is shown in Figures III-5 and III-6.    In 

this case,  the convergence rates were increased and the beamsteer filter set 

was used as the initial filter se'..    Again, the two-loop algorithm appears to 

have converged more rapidly toward the optimum filter and to have responded 

more rapidly to the weaker noise component. 

Figure III-7 gives the multiple-constraint results for the two- 

loop algorithm after 500 iteration^.    It can be compared with Figure III-3 to 

III-3 
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determine the effect of the constraint requiring orthogonality between   F      in 

the first loop and   F     in the second loop.    Both figures depict results obtain- 

ed from an initial filter designed to minimize the specified noise field (with 

the weaker coherent noise component removed).    Convergence rates in both 

cases were    M.  = 0.00015   in the first loop and    M    = 0.0003   in the second 

loop.    The orthogonality constraint appears to have stabilized the convergence 

process.    The noise output power for the individual components did not fluctu- 

ate nearly as much in the multiple-constraint mode.    Furthermore,  the noise 

output power for the various noise components after 500 iterations Wi« much 

closer to that which would have been obtained from an optimum system. 

It is interesting that the various adaptive algorithms perform 

better than the optimum filter on the discrete coherent noise components at 

the expense of poorer performance on the white noise and composite noise. 

The chief objective of this study was to determine whether 

multiloop adaptive filtering could reduce the differences in the rate of conver- 

gence associated with unequal eigenvalues in the noise matrix.    The simulation 

results have demonstrated that multiloop adaptive filtering does indeed have 

this capability.    This capability is of potential use in speeding the rate of con- 

vergence when the noise statistics vary slowly with time.    In the event of such 

quasi-stationary noise statistics, the single-loop adaptive algorithm would 

otherwise tend to hinder adjustment to the changing noise statistics because of 

unequal eigenvalues in the noise matrix. 
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